Linux - статьи



              

Кластерные технологии и распределенные вычисления - часть 2


Следует отметить, что на кластере нужно исполнять приложения, которые уже написаны с учетом параллельных вычислений и «знают», что разные части программы будут выполняться на разных узлах кластера. Основные стандартные компоненты современных многоуровневых систем, как правило, соответствуют этим требованиям. Так сервер Apache каждый запрос отрабатывает отдельным потоком, и может быть эффективно использован как на одной SMP-машине, так и на сбалансированном по нагрузке кластере. Серверы приложений и баз данных, такие как WebSphere, DB2, Oracle, MySQL, Postgress, также могут быть сконфигурированы с учетом многопроцессорности (а иногда — и многокомпьютерности), что позволяет запускать их на кластере и балансировать нагрузки на каждый узел.

Для взаимодействия процессов, принадлежащих одному приложению, но работающих на разных узлах кластера можно использовать как стандартные для Unix механизмы взаимодействия: потоки, трубы, разделяемые файлы, так и специализированные библиотеки передачи сообщений. Для Linux самыми популярными из таких библиотек являются PVM и MPI, хотя они могут обеспечивать взаимодействие компонентов, работающих под управлением разных операционных систем. Если приложение написано с их использованием, то оно идеально подходит для работы на кластере.

Авторами книги «Параллельные вычисления» Валентином и Владимиром Воеводиными была проведена большая работа по изучению существующих программ, написанных на языке Фортран для решения задач минимизации, линейной алгебры и математической физики. На основе этого исследования ими была разработана теория изучения и выделения параллельной структуры программ для определенного ими линейного класса алгоритмов. Оказалось, что среди 12 тыс. строк, изученных ими алгоритмов, к линейному классу можно свести около 90-95% текстов. Таким образом, постепенно появляются теоретические основы для выделения параллельной структуры алгоритмов с последующей их реализацией в виде параллельных программ. В то же время часто в бизнес-приложениях решаются комбинаторные задачи, которые связаны с изучением небольшой выборки из достаточно большого массива информации.




Содержание  Назад  Вперед